• ZimVie Announces Launch of Next-Generation TSX™ Implant in the United States

    ソース: Nasdaq GlobeNewswire / 03 11 2022 08:30:00   America/New_York

    WESTMINSTER, Colo., Nov. 03, 2022 (GLOBE NEWSWIRE) -- ZimVie Inc. (Nasdaq: ZIMV), a global life sciences leader in the dental and spine markets, today announced the launch of the TSX Implant in the United States, the latest innovation in the company’s platform of surgical, restorative, and digital dentistry solutions. TSX Implants are designed for immediate extraction and loading protocols as well as placement predictability and primary stability in soft and dense bone. The TSX Implant incorporates features with more than two decades of real-world, clinical data to deliver peri-implant health, crestal bone maintenance, long-term osseointegration, and prosthetic stability.1-8, 11-13* Integrated with ZimVie’s end-to-end digital workflows and engineered with surgical and restorative versatility, the TSX Implant furthers ZimVie’s commitment to simplify procedures and optimize practice protocols.

    The TSX Implant made its debut last week at the American Academy of Periodontology’s annual meeting in Phoenix, Arizona, and follows ZimVie’s joint launch of the T3® PRO Tapered Implant and Encode® Emergence Healing Abutment in June 2022.

    “I am pleasantly surprised how easily the TSX Implants engaged at the apex in extraction sites and was excited to see 50 Ncm (newton centimeters) of torque using the new extraction protocol,” said Julius Bunek, DDS, MS, PLLC in Ann Arbor, Michigan. “Further, I was impressed with how well the implant followed the planned path of insertion and did not track off course. This implant’s compatibility with my existing surgical and prosthetic instrumentation along with the new design features are just some of the reasons I plan to use this system in my practice.”

    The TSX Implant utilizes a contemporary hybrid of ZimVie’s proprietary dual acid-etched (DAE) and MTX™ surface technologies to balance peri-implant health needs in the coronal and sub-coronal regions.1-5, 11-13* Minimally rough coronal surfaces like DAE may lower the risk of biofilm formation and peri-implantitis while offering excellent osseointegration potential to maintain crestal bone.1-5, 10-13* Meanwhile, the subcoronal MTX surface offers high osteoconductive potential with over two decades of clinical success.7, 8*

    In addition to advanced surface technology, the TSX Implant’s progressive threads and taper are designed to follow the patient’s prepared osteotomy and provide a precisely positioned and aesthetically restored implant with high primary stability.1, 9*

    “We created the TSX Implant to improve patient experience and enhance clinicians’ confidence in successful procedures that can be delivered more efficiently,” said Indraneel Kanaglekar, SVP and President of ZimVie Dental. “We continue to invest in bringing new, innovative products to market that broaden our suite of digitally integrated, efficient, and versatile workflows designed to improve patient health and satisfaction.”

    ZimVie’s next-generation implant is compatible with the Encode® Emergence 3-in-1 Healing Abutment, Impression Coping, and Scanbody System. To help the surgeon master immediate implants with greater efficiency and more predictability, the TSX Implant is surgically compatible with familiar soft and dense bone protocols, existing tools, and the company’s digital dentistry platform.

    For more information on ZimVie Dental implants, suite of connected solutions, and continuing education, please visit https://www.zimvie.com/en/dental.html.

    About ZimVie
    ZimVie is a global life sciences leader in the dental and spine markets that develops, manufactures, and delivers a comprehensive portfolio of products and solutions designed to treat a wide range of spine pathologies and support dental tooth replacement and restoration procedures. The company was founded in March 2022 as an independent, publicly traded spin-off of the Dental and Spine business units of Zimmer Biomet to breathe new life, dedicated energy, and strategic focus to its portfolio of trusted brands and products. From its headquarters in Westminster, Colorado, and additional facilities around the globe, the company serves customers in over 70 countries worldwide with a robust offering of dental and spine solutions including differentiated product platforms supported by extensive clinical evidence. For more information about ZimVie, please visit us at www.ZimVie.com. Follow @ZimVie on Twitter, Facebook, LinkedIn, or Instagram.

    Media Contact Information:

    ZimVie
    Laura Driscoll • Laura.Driscoll@ZimVie.com
    (774) 284-1606

    ZimVie
    Allison Johnson • Allison.Johnson@ZimVie.com
    (774) 266-8046

    Investor Contact Information:

    Gilmartin Group LLC
    Marissa Bych • Marissa@gilmartinir.com

    * Pre-clinical studies may not be indicative of clinical performance.

    Data on file.

    2 Xuesong Wang, Olga Sanchez, Elnaz Ajami, Hai Bo Wen. Impact of Implant Surface Roughness on Pathogenic Bacterial Adhesion. Abstract N° EAO- 266. European Association for Osseointegration, Geneva 2022. Accepted for publication at COIR Special Issue.

    3 Zetterqvist L, Feldman S, Rotter B, et al. A prospective, multicenter, randomized controlled 5-year study of hybrid and fully etched implants for the incidence of peri-implantitis. J Periodontol. 2010; 81:493-501.

    Mendes VC, Moineddin R, Davies JE. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. J Biomed Mater Res A. 2009; 90(2):577-85.

    5 Davies JE, Ajami E, Moineddin R, Mendes VC. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface. Biomaterials 2013; 34:3535-35456.

    Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling post- restorative crestal bone levels. Int J Periodontics Restorative Dent 2006; 26(1):9-17.

    Trisi P, Marcato C, Todisco M. Bone-to-implant apposition with machined and MTX microtextured implant surfaces in human sinus grafts. Int J Periodontics Restorative Dent 2003; 23(5): 427-437.

    Todisco M, Trisi P. Histomorphometric evaluation of six dental implant surfaces after early loading in augmented human sinuses. J Oral Implantol. 2006;32(4):153-166.

    Huang HL, Tsai MT, Su KC, Li YF, Hsu JT, Chang CH, Fuh LJ, Wu AY. Relation between initial implant stability quotient and bone-implant contact percentage: an in vitro model study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Nov;116(5):e356-61.

    1Subramani et al. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 2009; 24(4):616-26.

    1Park SJ, Sanchez O, Ajami E, Wen HB. Bacterial Adhesion to Different Dental Implant Collar Surfaces: An in-vitro comparative study. 34th Annual Meeting Academy of Osseointegration, Washington, DC, March 2019.

    1Bermejo P, Sanchez MC, Llama-Palacios A, Figuero E, Herrera D, Sanz Alanso M. Biofilm formation on dental implants with different surface micro-topography: An in vitro study. Clin Oral Impl Res 2019; 30:725–734.

    1Albrektsson T, Wennerberg A. Oral Implant Surfaces: Part 1-Review Focusing on Topographic and Chemical Properties of Different Surfaces and In Vivo Responses to Them. Int J Prosthodont 2004; 17(5):536-543.


    Primary Logo

シェアする